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Materials can be experimentally characterized to TPa pressures by sending a laser-induced 
shock wave through a sample that is pre-compressed inside a diamond-anvil cell.  This 
combination of static- and dynamic-compression methods has been experimentally 
demonstrated, and ultimately provides access to the 10-100 TPa (0.1-1 Gbar) pressure 
range that is relevant to planetary science, to testing first-principles theories of condensed 
matter, and to experimentally studying a new regime of chemical bonding. 
 

In nature, and specifically when considering planets, high pressures are clearly evident in 
two contexts: the conditions occurring deep inside large planetary bodies, and the transient 
stresses caused by hypervelocity impact among planetary materials.  In both cases, typical peak 
pressures are much larger than the crushing strength of minerals (up to about ~1-10 GPa, 
depending on material, strain rate, pressure and temperature), so can be evaluated by 
disregarding strength and treating the rock, metal or ice as a fluid.  Ignoring the effects of 
compression, the central (hydrostatic) pressure of a planet is therefore expected to scale roughly 
as the square of the planet’s bulk density (ρplanet, assumed constant throughout the planet) and 
radius (Rplanet): 
 

Pcenter  ~  7 TPa (ρplanet/ρJupiter)
2 (Rplanet/RJupiter)2   (1) 

 
Here the scaling factor is adjusted to match the central pressure of Jupiter-like planets (RJupiter 
and ρJupiter are the radius and bulk density of Jupiter, respectively), and the effects of compression 
and of differentiation – segregation of dense materials toward the center of a planet – act to 
increase the central pressure for larger, denser, more compressed or more differentiated planets 
relative to (1).  Consequently, peak pressures in the 1-10 TPa range exist inside large planets, 
with Earth’s central pressure being 0.37 TPa and “super-giant” planets expected to have central 
pressures in the 10-100 TPa range.   

In addition to static considerations, impact – the key process associated with growth of 
planets, and with the initial heating that drives the geological evolution of planets – is also 
expected to generate TPa pressures.  Impedance-matching considerations described below can be 
combined with Kepler’s third law to deduce that peak impact pressures for planetary objects 
orbiting a star of mass Mstar at an orbital distance Rorbit are of the order 

 
  Pimpact ≈ 1 TPa (Mstar/MSun) (ρplanet/5.5 g cm-3) (Rorbit/1 AU) -1 (2) 

 
Scaling here is to the mass of the Sun, and the average density and orbit of Earth, the latter being 
in astronomical units (1 AU = 1.496 x 1011 m); also, the characteristic impact velocity (u0) is 
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taken as the average orbital velocity according to Kepler’s law, u0 = 2πRorbit/Torbit with Torbit 
being the orbital period, and (2) assumes a symmetric hypervelocity impact.   
 While recognizing that materials have been characterized at such conditions through 
specialized experiments (e.g., shock-wave measurements to the 10-100 TPa range in the 
proximity of underground nuclear-explosions, and from impact of a foil driven by hohlraum-
emitted x-rays) (1-3), laboratory experiments tend to achieve significantly lower pressures.  As 
with planetary phenomena, both static (diamond-anvil cell) and dynamic (shock-wave) methods 
are available for studying macroscopic samples at high pressures, but these are normally limited 
to the 0.1-1 TPa range (4).  Still, these pressures are of fundamental interest because the internal-
energy change associated with compression to the 0.1 TPa (1 Mbar) level is roughly (5) 
 
    ΔE ≈ – P ΔV ~ 105 J per mole of atoms   (3) 
 
with volume changes (ΔV) being approximately 20% of the 5 cm3 typical molar volume of 
terrestrial-planet matter (here we consider a mole of atoms, or gram-formula weight, which is 
3.5, 5 and 6 cm3 for diamond, MgO and water, respectively, at ambient conditions).  The work of 
compression thus corresponds to bonding energies (~1 eV = 97 kJ per mole, characteristic of the 
outer, bonding electrons of atoms), meaning that the chemical bond is profoundly changed by 
pressures of 0.1 TPa.  This expectation has been verified through numerous experiments showing 
that the chemical properties of matter are significantly altered under pressure: for instance, 
hydrogen, oxygen and the “noble gas” xenon transform from insulating, transparent gas, fluids or 
crystals at low pressure to become metals by ~1011 Pa (5, 6). 
 

 
 
Fig. 1.  Schematic of diamond-anvil cell (left), showing both a cross-section (blue arrow indicates 
direction of incoming, shock-wave generating laser beams) and a pulled-apart view, and photograph 
(right) of a diamond cell as a laser-induced shock is being generated during an experiment at the Omega 
laser facility (University of Rochester). 
 
 In the present article, we briefly describe laboratory techniques that have recently been 
developed for studying materials to the 10-100 TPa range of relevance to planetary science.  In 
particular, as most planets now known are supergiants of several (~ 1.5-8) Jupiter masses 
orbiting stars at distances of a fraction of 1 AU (7), (1)-(2) imply a strong motivation for 
characterizing materials up to the 100 TPa (1 Gbar) level.  In order to reach such conditions, we 
combine static and dynamic techniques for compressing samples: specifically, propagating a 
shock wave through a sample that has been pre-compressed in a diamond-anvil cell (Fig. 1).  By 
starting with a material that is already at high (static) pressures, one reaches higher compressions 
than could be obtained by driving a shock directly into an uncompressed sample.   

Moreover, by varying the initial density (pressure) of the sample – and also by pulse-
shaping the shock-wave entering the sample – one can tune the final pressure-density-



 3 

temperature (P–ρ–T) state that is achieved upon dynamic loading.  This is particularly relevant to 
planetary applications, because the average temperature profile through the convective interior of 
a planet is isentropic, rather than following a shock-compression curve (Hugoniot).  Pre-
compression thus allows one to significantly reduce the heating that tends to dominate the 
highest-pressure dynamic experiments, which is important for better characterizing the inter-
atomic forces under compression.  
  
Experimental Approach 
 
 Diamond-cell samples are necessarily small, ~100-500 µm diameter by 5-50 µm 
thickness, as it is the small area of the diamond tip (culet) that allows high pressures to be 
achieved.  Shock-compression of such small samples is not well suited to experiments involving 
mechanical impact, for example by a projectile launched from a light-gas gun (which currently 
sets the state of the art for high-quality shock-wave measurements, but involves sample 
dimensions of ~ cm diameter by mm thickness).  Instead, a laser-generated shock-wave is better 
suited to the dimensions of the diamond cell, with a well-defined shock front of about 200-500 
µm diameter being readily achieved at presently available facilities. 
 Several laser beams are typically focused onto the outer surface of one of the diamond 
anvils, so as to generate an intense pulse of light that is absorbed at the diamond surface (thin 
layers of laser-absorbing plastic and x-ray absorbing Au are usually deposited on that diamond 
surface) (Fig. 2).  The outermost diamond is thereby vaporized, launching a high-amplitude 
pressure wave into the anvil due to a combination of the rapid thermal pressure generated in the 
diamond (resulting from heating at nearly-constant volume) and linear-momentum balance 
(“rocket effect”) relative to the diamond vapor that expands outward, back toward the incoming 
laser beams.  Such a high-amplitude wave has the property of being self-steepening for a 
material with a normal equation of state (∂KS/∂P > 0 for the adiabatic bulk modulus KS).  As a 
result, a shock-front is created inside the anvil and propagates toward the sample (8, 9). 
 

 
Fig. 2.  Schematic cross-section of diamond anvils and sample, with the drive-laser that creates the shock 
wave entering from the left.  Supports for the anvils are shown in purple and, as described in the text, 
current laser systems require the anvil on the shock-entry side to be thin.  The sample is indicated, along 
with a stepped shock-wave standard, and diagnostics described in the text (VISAR and – not shown – 
pyrometry) record the dynamic compression of the sample through the second anvil. 
 

The sample itself is pre-compressed inside a metal gasket, either directly (e.g., if it is a 
fluid) or else within a pressure-transmitting fluid (Fig. 2).  Current methods allow samples to be 
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pre-compressed up to no more than ~1-5 GPa, because the diamond anvil from which the shock-
front enters needs to be thin, no more than about 100-400 µm thick (10, 11).  This amounts to 
little more than a microscope-slide cover slip, albeit made of diamond.  As discussed below, this 
limitation arises from the short duration of laser pulses available at present-day facilities. 

Two types of calibrants are included in the gasket hole, along with the sample: one or 
more small (~1-10 µm) chips of ruby, and a shock-wave standard.  The ruby is used to measure 
the pressure of the pre-compressed sample (P1), using the ruby-fluorescence method (12), from 
which the density of the sample (ρ1) is determined prior to shock compression (the equation of 
state of the sample must therefore be known at the pre-compression pressures).  The shock-wave 
standard consists of a metal plate, stepped so as to have at least two well-determined thicknesses, 
or of a well-characterized dielectric material that transforms to a metal under shock loading.  In 
either case, the mechanical response of the shock-wave standard needs to be well known: i.e., to 
have a well-determined relationship between shock and particle velocities, US and up, as well as 
the release or re-shock response from the initial shock state.  Aluminum, platinum and tungsten 
are examples of shock-wave standards, and a measurement of the shock velocity (the shock-
wave transit-times across the different, well-calibrated thicknesses of the standard) then yields 
the particle velocity of the shock-front entering into the sample (3, 13). 
 Upon exiting the first diamond anvil, the shock front traverses the sample chamber 
(including both sample and calibrants) and then transits through the second (back) diamond 
anvil.  At this point, there is no concern if the shock-wave decays, so the back anvil can be of 
typical thickness for high-pressure experiments (~ 2.5 mm); it serves as a window, containing the 
sample and allowing its characterization during shock-compression.  Both anvils as well as the 
sample (and calibrants) are normally vaporized during an experiment, although the cell that 
contains the anvils is re-useable.  With shock velocities of order ~ 20 km/s = 20 µm/ns, the entire 
experiment is completed within a few nanoseconds. 

 
Fig. 3.  VISAR (“Velocity Interferometry from the Surface of Any Reflector”) record from a laser-shock 
experiment through a pre-compressed sample (14), showing velocity fringes as a function of time 
(horizontal axis) obtained from an optical streak camera imaging light reflected off the stepped-Al shock 
standard across the ~ 300 µm width of the sample area (vertical axis).  Fringe positions are proportional to 
velocity of the reflecting surface, so shifts in fringes (e.g., at breakout) indicate changes in velocity.  
Curvature in breakout times indicate that the shock fronts are not exactly planar, and the stepped breakout 
at the center of the image shows the difference in travel time through the thin and thick Al steps (Fig. 2). 
 

third 
shock 
breaks out 
of Al/water 
interface 

second 
shock 
reaches 
Al/water 
interface 
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A set of forward- and backward-traveling stress waves (shock or rarefaction) is in general 
created at each interface between diamond, calibrant and sample, so a complete temporal record 
is needed of the various waves that traverse the sample.  This is usually accomplished by 
velocity interferometry, VISAR (15), that provides a record of the shock and material (particle) 
velocities inside the sample chamber (Fig. 3).  Briefly, VISAR operates by illuminating the 
sample with a single-frequency laser and imaging the reflected light through an interferometer 
onto a detector.  The interferometer is configured to have unequal paths: a change in the 
frequency of the light passing through it causes a change in the fringe phase in proportion to the 
Doppler shift in frequency.  The velocity of moving reflectors in the target (interfaces and shock 
fronts) are thereby measured to ~1% precision.  If the initial thickness of the (pre-compressed) 
sample is known, a measurement of the shock-wave transit time determines the shock velocity. 

The pressure (PH), density (ρH) and internal energy change (EH – E1) of the sample during 
shock compression are then determined by the Hugoniot relations that describe conservation of 
mass, linear momentum and energy (V = 1/ρ is specific volume) (8): 
 

ρ1US  =  ρH (US – up)     (4) 
 

PH – P1  =  ρ1 US up      (5) 
 

EH – E1  =  (1/2) (PH + P1) (V1 – VH)     (6) 
 
Here, subscripts H and 1 indicate the shock-compressed (Hugoniot) state and the initial, 
unshocked (in the present case, statically pre-compressed) state, respectively; US is the velocity 
of the shock front (assumed to be steady), and up is the particle velocity to which the material is 
accelerated upon shock loading (without loss of generality, the material is taken as having up = 0 
prior to shock compression).  These relations describe a one-dimensional compression such that, 
for unit cross-section, US and ρ1US define a volume and corresponding mass of unshocked 
material that is engulfed by the shock front in unit time.  That mass is compressed to a volume 
US – up having a density ρH; the volume change (per unit cross section and mass transited by the 
shock front in unit time) is thus given by – up in (4).  The pressure change across the shock front 
is the force per unit area (of cross section), or the mass ρ1US times the acceleration up in (5).  
Finally, (6) states that (ignoring the pre-compression pressure P1) half the – PΔV compressional 
energy change is lost in accelerating the material to the velocity up on shock loading, and 
(combining with (4) and (5)) the Hugoniot energy is proportional to up

2 (the internal energy is 
expressed here in J/kg = m2 s-2). 
 It is empirically found that the shock-wave velocity scales linearly with particle velocity 
for a wide variety of materials over a moderate range of compressions (8, 13, 16, 17): 
 

US  =  c + s up      (7) 
 
The mass engulfed by the shock front per unit time, ρ1US, is therefore proportional to up, and the 
energy flux deposited into the sample then scales as ~ up

3 (energy per unit time and cross-
sectional area).  For a laser-produced shock wave, assuming the energy flux into the sample is 
proportional to the laser intensity I – at least for a moderate range of intensities – one 
consequently expects the shock pressure to scale roughly as 
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P  ~  I 2/3       (8) 
 
In reality, laser-induced shock pressures appear to rise less rapidly than (8), the exponent being 
closer to 0.6 than 0.7, no doubt due to inefficiencies in laser-target coupling that can become 
worse as I increases (18, 19) and to US ultimately increasing sub-linearly with up (deviations 
from (7) typically involve a negative contribution quadratic in up (e.g., 3), and the occurrence of 
phase transitions under shock compression likewise reduces US at a given up). 
 Although reasonable for understanding the conditions achieved by laser-driven shock 
waves, (8) is inadequate for determining the properties – notably, the equation of state – of a 
sample at high pressures.  Instead, one applies the fact that conservation of mass and momentum 
require that both the particle velocity and pressure be constant across each interface traversed by 
the shock wave(s) (8, 16).  Measuring the shock velocity, hence pressure, density and particle 
velocity in the stepped shock-wave standard (blue point in Fig. 4), determines the magnitude of 
the stress wave about to enter the sample itself.  The material velocity and pressure of the sample 
and standard are brought to the common values up and PH across the interface (red point in Fig. 
4): the pressure in the standard decreases or increases, respectively, depending on whether it is 
less or more compressible than the sample (Fig. 4 illustrates the former case, with the pressure 
drop in the standard indicated by the curved blue arrow; in detail, a correction is made in order to 
account for the fact that the decompression follows an isentrope rather than the Hugoniot).  
 

 
Fig. 4.  Impedance matching solution for the Hugoniot pressure (PH) and particle velocity (up) in the 
sample, as determined from the shock velocity US measured across the sample that by (5) defines the 
slope of the red line (P1 is ignored here).  The intersection with the equation of state of the standard (blue 
curve), reflected about the pressure–particle velocity state achieved in the standard (blue point), defines 
the common state (red point) behind the forward- and backward-travelling waves in the sample and 
standard.  In a mechanical-impact experiment, u0 would correspond to the impact velocity of the standard 
into the sample. 
 
Conditions Achieved 
 
 In order to evaluate the conditions generated in laser-shock experiments on pre-
compressed samples, we calculate the Hugoniot equation of state by way of the Mie–Grüneisen 
approach that takes the sample pressure (Hugoniot pressure PH achieved on shock loading) as 
arising from two terms, compression along a reference path to the final volume (V) plus thermal 
pressure at that (constant) volume (16, 17): 
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PH (V)  = PS(V) + (γ/V) [EH(V) – ES(V)]   (9) 
 
Here, the reference path is an isentrope, indicated by subscript S, and the Grüneisen parameter γ 
= V(∂P/∂E)V depends on volume and temperature (or thermal energy): as described below, 
ionization and other effects cause γ to depend on temperature.   

The internal energy along the isentrope, ES(V), is given by the isentropic equation of state 
PS(V) because  – (∂E/∂V)S = PS.  We specifically use the Eulerian finite-strain formulation for the 
isentrope, motivated by the fact that the Cauchy stress (the trace of which gives the pressure) is 
intrinsically a function of Eulerian strain (20), and that the resulting equation of state is 
empirically found to successfully match experimental measurements involving both finite and 
infinitesimal compression (e.g., wave-velocity measurements) (17, 21).  That is, the internal 
energy change upon isentropic compression is assumed well-described by a Taylor expansion in 
the Eulerian finite-strain measure f = (1/2) [(V/V0)–2/3 – 1] (defined positive on compression) 
 
    ΔES  =  (9/2) V0 K0S  f 2 [1 + (K0S’ – 4) f + …]  (10) 
 
K is the bulk modulus, subscript zero indicates zero-pressure conditions and prime is for 
differentiation as a function of pressure.  The coefficients have been evaluated in (10) such that 
PS and ΔES both vanish as f goes to zero.  The resulting P–V equation of state (Birch–Murnaghan 
form) is 

PS  =  3 K0S  f  (1 + 2f )5/2 [1 + (3/2)(K0S’ – 4) f + …]   (11) 
 

Combining (9) with (6) yields  

PH  = {PS + (γ/VH)[(P1(V1 – VH)/2 +

! 
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with P1 = P1(V1) being the pre-compression pressure at volume V1, and PH = PH(VH) and PS = 
PS(VH) are the Hugoniot and isentrope pressures at volume VH.  Here, we ignore the possibility of 
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A  =  3 (1 + 2fH)3/2 fH {1 + [2 + (3/2) (K0S’ – 4 – γ)] fH  

+ 3 (K0S’ – 4) [1 – (γ/2)] fH
 2 + …} (13b) 

 
B  =  9 (γ/2) (1 + 2fH)3/2 f1

 2 [1 + (K0S’ – 4) f1 + …]     (13c) 
 
 C  =  3 (γ/2) (1 + 2f1) f1 [(1 + 2fH)3/2 – (1 + 2f1)3/2] [1 + (3/2) (K0S’ – 4) f1 + …] (13d) 
 
Without pre-compression, f1 = 0; consequently, the terms B and C vanish and the denominator in 
(13a) is simplified.   
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Fig. 5.  Predicted pressure–density equations of state for condensed matter, due to isentropic compression 
(Isentrope: heavy dark blue curve), shock compression (Hugoniot: heavy red curve, ρ1/ρ0 = 1.0) and 
shock compression of samples pre-compressed to initial densities of ρ1/ρ0 = 1.1, 1.5, 2.0 and 3.0 (thin red, 
green, turquoise and blue curves) assuming K0S’ = 4, γ0 = 1.5 and γe = 0.2 (see text).  Pressure and density 
are normalized to the zero-pressure bulk modulus and density, respectively, and the Mbar (= 100 GPa) 
and Gbar (= 100 TPa) pressure regimes are indicated based on a typical value of K0S ≈ 1011 Pa; 
corresponding central pressures for Earth, Jupiter and super-giant planets are indicated on the right.  The 
Hugoniot for the linear US–up relation (7) and the density dependence of the electron–gas pressure, PEG ~ 
ρ5/3 ((8): only the slope, not the absolute value, has meaning here) are shown by thin black and grey lines.  
Because c in (7) is the zero-pressure bulk sound velocity, (K0S/ρ0)1/2, its value is absorbed in our pressure 
normalization; in accord with K0S’ = 4 for the finite-strain calculations, we set s = 5/4 (17).  Conditions 
near zero pressure are shown on a linear plot (inset) to complement the log–log plot of the main figure. 



 9 

 In order to focus on general scaling relations, rather than detailed calculations for specific 
materials, we assume K0S’ = 4 (second-order or Birch equation of state), γ/V = γ0/V0 = constant 
and γ0 = 1.5 because these are typical values for condensed matter (K0S’ ≈ 3-6 and γ0 ≈ 1-2 in 
many instances) (17).  In addition, we add an electronic component to the Grüneisen parameter, 
γe = 0.2, to account for excitation of electrons when the thermal energy exceeds [EH(V) – 
ES(V)]/K0SV0 > 0.1, and treat the pre-compression as being isentropic rather than isothermal, 
ignoring the ~ percent-level difference between the isotherm and isentrope pressure at volume 
V1.  The results show that Gbar (= 100 TPa) pressures are expected for materials compressed ~ 4- 
to 20-fold (in ρ/ρ0) for the Hugoniot and isentrope, respectively (Fig. 5).  Detailed pressures 
would differ for different parameter values than those assumed here (larger values of γ increase 
the Hugoniot pressure at a given volume, and larger values of K0S’ increase both the adbiabat and 
Hugoniot pressure at a given volume).  Also, more terms may be needed in the finite-strain 
expansions (10), (11) and (13) at high compressions; and the linear US – up relation (7) yields an 
infinite Hugoniot pressure at a density ρ/ρ0 = s/(s – 1) = 5 for the value of s used here (8, 16)). 

 
Fig. 6.  Internal energy as a function of pressure corresponding to Fig. 5, showing the isentrope and the 
Hugoniots for initially uncompressed (red) and pre-compressed samples (red, green, light blue).  
Approximate dimensional values for the axes are indicated assuming V0 ~ 5 cm per mol of atoms and K0S 
= 1011 Pa; a typical pre-compressed sample size is about 400 µm diameter by 10 µm thick, or roughly 300 
nmol of atoms.  Note that the pressure dependence of the Hugoniot energy for the linear US – up relation 
(7) (black) is similar to that derived from the Mie–Grüneisen analysis (9). 
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The effect of pre-compression is to significantly decrease the thermal pressure of the 
Hugoniot state, with much of the P–ρ regime between the Hugoniot and isentrope (or isotherm) 
being accessible with as little as 50 percent (1.5-fold) initial pre-compression (Fig. 5).  Thus pre-
compression is closely analogous to the application of multiple shocks, including in the fact that 
breaking a shock front into as few as 4 reverberations makes the compression nearly isentropic 
(22).  As compressible fluids of planetary interest, such as H2 and He, can be subjected to 
relatively large pre-compressions, it is evident that the high-pressure thermodynamic state can be 
effectively tuned over a broad range of temperatures or internal energies (Fig. 6). 
 Megajoule-class lasers represent the state of the art in facilities currently under 
development for laser-shock experiments (23).  As these consist of ~102 beams, each delivering 
1-10 kJ, Fig. 6 suggests that energies corresponding to Gbar pressures should be deliverable to a 
pre-compressed sample even if only a fraction of the beams can be used with limited efficiency 
(e.g., ten 1 kJ beams coupled at 1 percent efficiency to provide 100 J in the sample).  Thus, Gbar 
pressures with tunable final thermal states will become accessible in the laboratory.  
 One of the key benefits of the high energy-density laser facilities is not only that they 
deliver pulses having high power (~ PW/cm2) over the 0.5-1 mm width of the sample area, but 
also that they can do so for the relatively long period of ~ 10-20 ns (versus the τ ~ 1-4 ns 
effective pulse width of current facilities) (23).  This is directly relevant to our experiments, 
because the shock front is followed by a rarefaction wave that develops at the end of the laser 
pulse (i.e., at time τ) and catches up with the shock in a time interval Δt from the initiation of 
shock loading.  The shock-wave thus travels a distance US Δt before being attenuated.  The 
rarefaction starts after the interface has traveled a distance upτ, and it travels at approximately the 
velocity US + up because the material is moving at velocity up and the local (high-pressure) sound 
velocity is about equal to the shock velocity.  Therefore, the catch-up distance is 
 

Δx  =  US Δt  ≈  (US + up)(Δt – τ) + upτ    (14) 
such that 
    Δx  ≈  US

2 τ / up  ~  (102 µm/ns) τ     (15) 
 
As a result, a 10-20 ns pulse width allows use of a ~ 1 mm thick diamond on the entry side, 
typical of the anvils that are used in static-compression experiments at Mbar pressures.  Rather 
than being limited to the 1-5 GPa pressures, as at present, pre-compressions to the 100 GPa range 
should thus be possible in experiments at the largest laser facilities now under development (e.g., 
a ~ mm-diameter laser-generated shock front generated at the surface of a 0.8 mm-thick diamond 
anvil avoids side-rarefaction).  That is, samples already transformed to a high-pressure – for 
example, metallic – state could serve as starting materials for experiments to the 10-100 TPa 
level. 
 
Initial Experiments and Future Potential 
 
 Fig. 7 illustrates the potential of laser-shock experiments on pre-compressed materials.  
Here, VISAR is used to characterize the optical properties of the sample, as well as to determine 
the Hugoniot pressure and density.  In addition, an estimate of the blackbody temperature of the 
sample is obtained by optical pyrometry.  The experiments clearly show that H2O transforms 
from a transparent dielectric at low pressures and temperatures (light visible even after 
transmission through the shock-compressed region) to a metallic-like state (light reflected off the 
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shock front) when taken to pressures and temperatures exceeding 150 GPa and 6000 K (14).  The 
profound change in outer, valence-electron states – chemical bonding – induced by high 
pressures and temperatures is visibly evident. 
 

 
 
Fig. 7.  VISAR records of shock-loaded H2O (pre-compressed to ~ 1 GPa) showing the transition from 
transparent behavior at P ~ 50 GPa and T < 3500 K (left: reflection of diamond-sample interface is visible 
through the shock-compressed sample, before and after first breakout); to opaque at P ~ 100 GPa and 
3500 < T < 9000 K (center: reflection disappears on breakout); to reflecting at P > 150 GPa and T > 9000 
K (right: new reflection appears from shock front, as evident from time-dependent – curved – fringes 
after breakout) (14).  Time and distance across the sample are along the horizontal and vertical axes, 
respectively, and redder (vs. blue) colors indicate higher recorded intensity of light. 
 
 It is crucial that pressure and temperature can be separately tuned because either can 
induce electronic changes in materials.  Helium, for instance, can be either thermally ionized or 
pressure-ionized, and it is by varying the initial compression that one can experimentally validate 
theoretical expectations of the conditions under which the insulator–metal transition takes place 
(Fig. 8).  The effect of ionization is to increase the pressure at a given density, and this is handled 
by including an explicit temperature-dependence to the Grüneisen parameter.  To the degree that 
electrons are thermally ionized, the thermal pressure intrinsically becomes a function of 
temperature (or thermal energy) and – along with other pressure-induced (e.g., structural) phase 
transitions – this influences the equation of state.  A major incentive for pre-compressing 
samples is to be able to vary such high-temperature phenomena, so as to be able to 
experimentally distinguish them from the effects of compression alone. 

These results, illustrating dramatic changes in chemical bonding at Mbar (100 GPa) 
conditions, reinforce the significance of being able to achieve significantly higher pressures in 
the future (Figs. 5-6).  Evidently, compressional-energy changes can reach keV in the Gbar (100 
TPa) regime, comparable to energies of core-electron orbitals.  Deep-electron levels within the 
atom can therefore participate in chemical bonding, and an entirely new type of chemistry 
becomes accessible in a (sub-nuclear) regime that is as yet unexplored by experiments. 
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Fig. 8.  Predicted contours of electrical conductivity (thin grey solid and dashed curves) for He as a 
function of pressure and temperature, showing that metallic properties can be induced either by high P or 
by high T.  These influences can be separately documented by varying the initial density of the sample: 
dot-dash contours trending from lower left toward upper right, colored to indicate pre-compression (1- to 
7-fold initial compression).  Electrical conductivity can be experimentally inferred from optical 
absorption and reflectivity (see Fig. 7), and the contours shown here are based on a semiconductor model 
described in (24-25).  A model isentrope for Jupiter’s interior is shown for comparison (dashed black 
curve). 
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